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Stokes flow in collapsible tubes:
computation and experiment
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This paper is concerned with the problem of viscous flow in an elastic tube. Elastic
tubes collapse (buckle non-axisymmetrically) when the transmural pressure (internal
minus external pressure) falls below a critical value. The tube’s large deformation
during the buckling leads to a strong interaction between the fluid and solid mechanics.

In this study, the steady three-dimensional Stokes equations are used to analyse
the slow viscous flow in such a tube whose deformation is described by geometrically
nonlinear shell theory. Finite element methods are used to solve the large-displacement
fluid–structure interaction problem. Typical wall deformations and flow fields in the
strongly collapsed tube are shown. Extensive parameter studies illustrate the tube’s
flow characteristics (e.g. volume flux as a function of the applied pressure drop through
the tube) for boundary conditions corresponding to the four fundamental experimental
setups. It is shown that lubrication theory provides an excellent approximation of
the fluid traction while being computationally much less expensive than the solution
of the full Stokes equations. Finally, the computational predictions for the flow
characteristics and the wall deformation are compared to the results obtained from
an experiment.

1. Introduction
Many fluid conveying vessels in the human body are elastic and deform substantially

in response to the traction exerted on them by the flow. Vessels which are subject to
a positive transmural (internal minus external) pressure are inflated and retain their
approximately cylindrical shape throughout the deformation. Since the vessel walls
typically have a high extensional stiffness, such deformations tend to be of small
amplitude.

However, numerous fluid conveying vessels are subject to a negative (compressive)
transmural pressure and they collapse (i.e. buckle non-axisymmetrically) when the
transmural pressure falls below a critical value. Examples of such vessels are the veins
above the level of the heart, the airways during forced expiration, the pulmonary
capillaries and the blood vessels in the heart muscle during systole. The buckling
greatly reduces the vessel’s structural stiffness. Therefore the wall deformations tend
to be large and the collapse leads to a strong interaction between the wall deformation
and the fluid mechanics. This strong fluid–structure interaction is responsible for
phenomena such as the flow limitation observed during forced expiration and the
development of large-amplitude self-excited oscillations, physiological examples of
which include wheezing and the Korotkoff sounds heard during sphygmomanometry.

† Present address: Department of Applied Mathematics and Theoretical Physics, University of
Cambridge, Silver Street, Cambridge CB3 9EW, UK.
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Figure 1. Sketch of a typical experimental setup.

The problem of flow in collapsible tubes has been studied experimentally by many
authors (e.g. Conrad 1969; Gavriely et al. 1989; Bertram, Raymond & Pedley 1990,
1991; Elad et al. 1992) and the typical experimental setup shown in figure 1, forms
the basis for most theoretical analyses: inside a pressure chamber, a thin elastic tube
(typically made of rubber) of length L, undeformed radius R0 and wall thickness
h is mounted on two rigid tubes. The chamber pressure, pext, can be prescribed
independently of the fluid pressure. Viscous fluid is pumped through the tube at a
steady flow rate (volume flux V̇ ). As in the physiological examples, the tube’s non-
axisymmetric collapse is often followed by large-amplitude self-excited oscillations.

The first theoretical investigations attempted to model the tube with simple lumped
parameter models (e.g. Katz, Chen & Moreno 1969; Conrad 1969) which were able
to reproduce some of the experimentally observed flow characteristics. However, they
were unable to predict any details of the tube’s deformation. One-dimensional models
in which the flow was averaged over the tube’s cross-section were developed next
(see e.g. Shapiro 1977). In these models the tube’s deformation was described by so-
called ‘tube laws’ which are functional relationships between the tube’s cross-sectional
area and the local transmural pressure. Depending on the range of the Reynolds
numbers considered, two distinct flow-limiting mechanisms can be found: wave-speed
limitation in the high-Reynolds-number models and viscous flow limitation in the
models concerned with lower-Reynolds-number flows (see e.g. Wilson, Rodarte &
Butler 1986).

Various modifications to the one-dimensional equations were proposed to include
the effects of flow separation (Cancelli & Pedley 1985), the wall’s axial tension and its
axial bending stiffness (Reyn 1987; McClurken et al. 1981). However, most of these
modifications were introduced on an ad hoc basis.

In order to develop a more rational model of the problem while avoiding the com-
plexities and computational requirements of a fully three-dimensional computation,
several authors (Pedley 1992; Rast 1994; Lowe & Pedley 1995; Luo & Pedley 1995,
1996; Shin 1996) examined the two-dimensional equivalent of the collapsible tube
problem: the zero (or finite) Reynolds number steady (or unsteady) flow in a two-
dimensional channel in which part of one wall is replaced by an elastic membrane.
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These studies provided a detailed picture of the fluid and solid mechanics involved in
the large-amplitude self-excited oscillations in this simplified system.

In another series of studies (Heil 1995, 1996; Heil & Pedley 1995, 1996), the steady
deformations of the fully coupled three-dimensional system were investigated: the tube
wall was modelled as a circular cylindrical shell and geometrically nonlinear shell
theory was used to model its large non-axisymmetric post-buckling deformation. The
fluid flow was modelled using lubrication theory (assuming low Reynolds numbers
and a small wall slope in the direction of the flow). The results revealed many features
which are unique to the three-dimensional geometry, such as snap-through buckling of
the tube wall, flow division into the two lobes which remain open during the buckling,
buckling with higher circumferential wavenumbers for increased upstream pressure,
etc. This model provides a very accurate description of the tube’s deformation but
some of the assumptions used in the simplification of the fluid equations were violated
(after the buckling, the wall slope at the downstream end tends to be quite large).

In order to develop the first entirely self-consistent model of the flow of viscous fluid
in a collapsible tube, the small-slope assumption was abandoned and the lubrication
theory was replaced by a solution of the steady three-dimensional Stokes equations
which describe the flow in arbitrary geometries at zero Reynolds number. This paper
presents the results of this study.

The paper is organized as follows: §2 gives a brief summary of the shell theory
used to describe the wall deformation and presents the governing fluid equations. The
numerical solution of the coupled problem is sketched briefly in §3. The computational
results are presented in §4: first we give examples for typical wall deformations and the
corresponding three-dimensional flow fields in the collapsed tube: then we present the
flow characteristics of the tube (e.g. volume flux as a function of the applied pressure
drop through the tube) for the four fundamental experimental setups and investigate
the effect of variations in the tube’s geometry. Section 5 describes an experiment in
which the flow characteristics were measured and compared to the computational
predictions. Finally, we discuss the implications that the results have for the above-
mentioned modifications to the ‘tube laws’ used in previous investigations.

2. The model
2.1. The shell equations

We model a flexible tube of length L, undeformed midplane radius R0 and wall
thickness h as a cylindrical shell and describe its deformation using the geometrically
nonlinear Kirchhoff–Love-type shell theory used in Heil & Pedley (1996). For a more
detailed description of the shell theory see e.g. Wempner (1973). The deformation of
the shell is expressed in terms of the dimensionless midplane displacements v = v∗/R0.
The superscript star distinguishes dimensional quantities from their non-dimensional
equivalents. We use Lagrangian coordinates ζα = ζ∗α/R0 (Greek and Latin indices
have values 1, 2 and 1, 2, 3, respectively, and the summation convention is used)
to parameterize the shell’s midplane such that the non-dimensional vector to the
undeformed midplane, r0 = r∗0/R0, is given by

r0 =
(
sin (ζ2), cos (ζ2), ζ1

)T
, ζ1 ∈ [0, L/R0], ζ2 ∈ [0, 2π]. (1)

Then the position of a material point at a non-dimensional distance ζ3 = ζ∗3/R0 from
the shell’s undeformed midplane is given by

r = r0 + ζ3n, ζ3 ∈ [−h/(2R0), h/(2R0)], (2)
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Figure 2. Sketch of the coordinate systems used in the analysis.

where n =
(
sin (ζ2), cos (ζ2), 0

)T
is the vector normal to the undeformed midplane

(see figure 2).
After the deformation, the material point on the midplane with the Lagrangian

coordinates ζα has been displaced to a new position R0(ζα) = r0(ζα) + v(ζα). We
decompose the displacement vector v into the undeformed basis, v = vj aj , where
the undeformed base vectors are given by aα = r0

,α and a3 = n. The comma denotes
the partial derivative with respect to the Lagrangian coordinates. Lowercase and
uppercase letters are used for shell variables associated with the undeformed and
deformed geometry, respectively.

The Kirchhoff–Love assumption states that material lines which were normal to
the undeformed midplane remain normal to the shell’s midplane throughout its
deformation and that they remain unstretched. This assumption provides a good
approximation for the shell’s deformation, provided the ratio of wall thickness, h,
to the minimum radius of curvature of the deformed shell remains small. With the
Kirchhoff–Love assumption, the vector to an arbitrary material point in the shell
after the deformation is given by

R = R0 + ζ3 N , (3)

where N is the vector normal to the deformed shell.
In spite of the large deformations, the strain of the shell is typically fairly small

which allows the use of Hooke’s law as the constitutive equation (it should, however,
be noted that many biological tubes are not well described by Hooke’s law). Then
the principle of virtual displacements, which governs the shell’s deformation is given
by (e.g. Wempner 1973)∫ 2π

0

∫ L/R0

0

[
Eαβγδ

(
γαβ δγγδ +

1

12

(
h

R0

)2

καβ δκγδ

)

−
(
R0

h

)
(f · δR) |ζ3=±h/(2R0)

]
dζ1 dζ2 = 0, (4)

where f = f∗/E is the traction per unit area of the undeformed midplane, non-
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dimensionalized with Young’s modulus E. γαβ and καβ are the non-dimensional strain
and bending tensors, respectively (given in the Appendix), and the dimensionless
plane stress stiffness tensor, Eαβγδ = E∗αβγδ/E is given by

Eαβγδ =
1

2(1 + ν)

(
δαγδβδ + δαδδβγ +

2ν

1− ν δ
αβδγδ

)
, (5)

where ν is Poisson’s ratio.
The variations of strain and bending tensor have to be taken with respect to the

displacements vi and their derivatives. The tube is clamped at both ends. Therefore,
at ζ1 = 0 and ζ1 = L/R0 the displacements have to be prescribed and we have
dv3/dζ1 = 0.

2.2. The fluid equations

2.2.1. The Stokes equations

For sufficiently low Reynolds number the Navier–Stokes equations, which gov-
ern the fluid flow, can be approximated by the linear Stokes equations given in
dimensionless form by

∂p

∂xi
= µ̄

∂2ui

∂x2
j

(6)

and the continuity equation

∂ui

∂xi
= 0, (7)

where

µ̄ =
µU

R0E
(8)

and µ is the dynamic viscosity of the fluid. In (6) and (7) the velocities were
nondimensionalized with the average velocity through the tube, ui = u∗i /U, where
U = V̇ /(πR2

0), and Young’s modulus was used to non-dimensionalize the pressure, p =
p∗/E. The Cartesian coordinates x∗i were non-dimensionalized with the undeformed
tube radius, xi = x∗i /R0.

The Cartesian components of the fluid traction on the tube wall are given by

fi = pNi − µ̄
(
∂ui

∂xj
+
∂uj

∂xi

)
Nj, (9)

where the Ni are the Cartesian components of the normal vector, N , on the tube wall.
Suitable boundary conditions for the finite element discretization of these equations

are the following. We prescribe a parabolic velocity profile at the far upstream end of
the tube (uα = 0, u3 = 2 [1− (x2

1 + x2
2)/(1− (h/2R0))

2]) and require normal outflow at
the downstream end (uα = 0). The weak form of the Stokes equations (which forms
the basis of the finite element discretization) only allows us to prescribe the pressure
at the tube’s downstream end indirectly through a boundary condition for the normal
component of the pseudo-traction. We set −p + µ̄(∂u3/∂x3) = 0 which sets the fluid
pressure to zero since we have imposed parallel outflow.

2.2.2. Lubrication theory

During the early stages of the tube’s collapse the wall slope in the axial direction, β
say, is small. We can exploit this to simplify the fluid equations since the ratio of the
typical radial and axial length scales is then given by β. Inserting this scaling into the
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continuity equation (7) shows that the ratio between the axial and transverse velocity
components is also of that order, i.e. u3/uα = O(β). Then the momentum equations
(6) show that at leading order the pressure is constant across each cross-section, i.e.
p = p(z)(1 + O(β)). Therefore, the leading-order flow field is given by the simplified
axial momentum equation

∂p

∂z
= µ̄

(
∂2u3

∂x2
+
∂2u3

∂y2

)
, (10)

which is subject to the no-slip condition on the tube walls and to the normalization
condition ∫

A(z)

u3 dx dy = π, (11)

which ensures that the same volume flux passes through every cross-section. The
equations are of parabolic character and if the volume flux is given, the pressure has
to be prescribed at one axial coordinate, e.g.

p|z=0 = pentry. (12)

A fluid solver based on these equations was developed in Heil & Pedley (1996). We
will assess the validity of the lubrication theory approximation in §§4.2 and 4.3.

2.2.3. Flow through a slightly buckled tube

In order to analyse the three-dimensional flow field in a slightly buckled tube
we will now briefly consider the flow through a tube whose wall shape is given by
R(φ, z) = 1 + εf(z) cos (Nφ), where φ is the polar angle and ε � 1. In order to
approximate the shape of a slightly buckled tube, we choose f(z) as

f(z) =


0 for z ∈ [−Lup, 0]

14.3 sin

(
π

(
1− z

L/R0

)2(
z

L/R0

)4
)

for z ∈ [0, L]

0 for z ∈ [L, L+ Ldown].

(13)

Since the wall’s shape is prescribed, its elastic properties are irrelevant and we can set
µ̄ = 1. Hence we solve the Stokes equations in cylindrical polar coordinates, i.e.

∂p

∂r
= ∇2ur −

ur

r2
− 2

r2

∂uφ

∂φ
, (14)

1

r

∂p

∂φ
= ∇2ur −

uφ

r2
+

2

r2

∂ur

∂φ
, (15)

∂p

∂z
= ∇2uz, (16)

and the continuity equation

∂ur

∂r
+
ur

r
+

1

r

∂uφ

∂φ
+
∂uz

∂z
= 0. (17)

The no-slip boundary conditions have to be applied on the buckled tube wall. We
expand the velocity and pressure fields and the no-slip boundary condition with
respect to the buckling amplitude ε, i.e. u = u(0) + εu(1) + ..., p = p(0) + εp(1) + ... and

u|r=1+εf(z) cos (Nφ) = u|r=1 + εf(z) cos (Nφ)
∂u

∂r

∣∣∣∣
r=1

+ ... = 0. (18)
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The zeroth-order flow field is the Hagen–Poiseuille flow through the unbuckled

tube,
[
u(0)
r , u

(0)
φ , u

(0)
z , p

(0)
]

=
[
0, 0, 2(1− r2), 8({L+ Ldown}/R0 − z)

]
and the boundary

conditions for the perturbation velocities are

u(1)
r = u

(1)
φ = 0 at r = 1 (19)

and

u(1)
z = −f(z) cos(Nφ)

∂u(0)
z

∂r
at r = 1. (20)

We expand the buckling mode f(z) into an axial Fourier series,

f(z) =

∞∑
k=−∞

c
(k)
f eiλkz , (21)

where λk = 2π/(Lup + L + Ldown). It can be shown that the general solution for the
perturbation quantities has the form

u(1)
r

u
(1)
φ

u(1)
z

p(1)

 =

∞∑
k=−∞

∞∑
j=1


c(jk)
r

c
(jk)
φ

c(jk)
z

c(jk)
p

 eiλkz


r(N−1)+2(j−1) cos (Nφ)

r(N−1)+2(j−1) sin (Nφ)

rN+2(j−1) cos (Nφ)

rN+2(j−1) cos (Nφ)

 . (22)

We substitute these expansions into equations (14)–(17) and into the boundary con-
ditions (19) and (20), separate the axial mode shapes and collect terms which are
multiplied by equal powers of r. Upon truncating the double series after a finite
number of terms, we obtain a system of linear equations from which the unknown
coefficients c(jk)

r , c
(jk)
φ , c(jk)

z and c(jk)
p can be determined.

In the next section we will use this result to validate the numerical solution of
the Stokes equations. The perturbation solution also shows two important features
of the Stokes flow in a slightly buckled tube. First, at leading order the buckling
does not change the overall pressure drop through the tube since the disturbance
pressure, p(1), is periodic in the axial and circumferential directions (see also Lamb
1945, §332). Secondly, the boundary conditions (19) for the transverse perturbation
are still homogenous. The transverse flow is driven by the axial wall slope, df/dz,
which enters the continuity equation (17) through the boundary condition (20) for
the axial disturbance velocity.

3. The numerical solution
For the numerical solution of the coupled problem, the Stokes and shell equations

were discretized with finite element methods. The coupled solution was then obtained
by means of an iterative procedure based on the following scheme: start with an initial
guess for the wall displacement field; solve the fluid equations in the corresponding
tube geometry; determine the fluid traction and use it in the load terms in the shell
equations; solve the shell equations for the tube’s new equilibrium position and iterate
until convergence.

Various modifications to this scheme had to be developed to make it robust enough
to handle the strongly nonlinear behaviour of the coupled system and to achieve
convergence within reasonable amounts of computer time. A displacement control
technique was used to overcome the convergence problems associated with the shell’s
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Figure 3. Comparison of the radial perturbation velocities for the flow in a slightly buckled tube
(ε = 0.01) as predicted by the perturbation analysis (solid lines) and the FEM computations
(symbols). The quantities are plotted at five axial positions: z = 5.0 (�), z = 6.0 (4), z = 7.0 (O),
z = 8.0 (�), z = 9.0 (◦), along the two symmetry lines, φ = 0 and φ = π/2.

snap-through behaviour. An extrapolation procedure, based on the scheme’s asymp-
totic convergence behaviour, was used to accelerate its convergence. An automatic
mesh generator updated the fluid mesh as the tube wall deformed. The computations
were carried out on the Cray C90 at the Pittsburgh Supercomputing Center. The
code executed at approximately 300 MFlop/s and about 4–5 hours of CPU time were
required to trace the tube’s deformation over the whole range of deformations (from
its initial axisymmetric shape to a strongly collapsed configuration). A more detailed
description of the numerical technique is given in Heil (1997).

The shell solver was only modified slightly from the previous version which was
documented in more detail in Heil & Pedley (1996). The newly developed Stokes solver
was tested by using it to compute the flow through the undeformed tube (Hagen–
Poiseuille flow). Furthermore, the predictions for the axial velocity component and
the pressure distribution for the flow in a moderately buckled tube were compared
to the results obtained from the lubrication theory solver, described in Heil & Pedley
(1996). The agreement between the Stokes solver and the lubrication theory solver
was very good as will be discussed in more detail in §4.2.

Finally, figure 3 shows the radial perturbation velocities at various axial positions in
the slightly buckled tube considered in §2.2.3. The perturbation velocities are plotted
along the two symmetry lines at φ = 0 and φ = π/2 (the arclength s along the
symmetry lines is defined as: s = −x1 on the vertical symmetry line and s = x2 on the
horizontal symmetry line). The symbols show the corresponding quantities obtained
from the finite element solution and the agreement can be seen to be very good. The
largest deviations occur near the boundaries since the perturbation solution does not
fulfil the no-slip boundary condition on the real boundary; see (19).
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4. Computational results
In all computations, presented in the following sections, Poisson’s ratio was set to

ν = 0.49 to reflect the near-incompressible behaviour of rubber tubes and biological
tissues. In view of the relatively thick walled tubes (by the standards of thin shell
theory) used in most experiments, the wall thickness was set to h/R0 = 1/20 which
is a value close to the upper limit of the applicability of thin shell theory. Unless
otherwise stated, the tube’s length was L/R0 = 10 and two short rigid tubes upstream
and downstream of the collapsible segment (Rup = Rdown = Lup = R0, Ldown = 2R0)
were added to the computational domain (it was checked that doubling the length
of the rigid tubes did not affect the results). To facilitate comparisons with previous
work, the volume flux will be represented by the non-dimensional parameter

q =
8µV̇L

πR4
0E

= 8µ̄
L

R0

, (1)

which can be identified as the non-dimensional pressure drop through the undeformed
tube.

4.1. The tube’s deformation

To illustrate the tube’s behaviour we will first consider its deformation in a procedure
in which the flow rate is prescribed by means of a volumetric pump attached to the
tube’s upstream end. We keep the fluid pressure at the tube’s far downstream end
constant, pdown = 0, and induce the tube’s collapse by increasing the chamber pressure,
pext.

For zero external pressure, pext = 0, the viscous pressure drop through the tube
sets the entire flexible section under a positive transmural pressure. Hence the tube is
inflated and it deforms axisymmetrically. Since the tube wall has a high extensional
stiffness, its axisymmetric deformation is very small and the pressure drop through
the tube is only slightly lower than the pressure drop in a rigid tube. As the
chamber pressure is increased, the transmural pressure decreases and first becomes
negative (compressive) at the tube’s downstream end. When the compressive load
exceeds a critical value, the axisymmetric deformation loses its stability and the tube
buckles non-axisymmetrically. Figure 4 shows the tube’s wall deformation as the
non-axisymmetric collapse increases.

The tube’s post-buckling deformation is governed by two competing effects. On the
one hand, the tube’s downstream end is always subject to the strongest compressive
load and this tends to move the point of strongest collapse as far downstream as
possible. On the other hand, the tube’s high extensional stiffness favours deformations
which minimize its axial extension. The axial extension is minimized for longitudinally
symmetric buckling deformations for which the point of strongest collapse is near the
centre of the tube.

For small amplitudes of the buckling deformation, the fluid pressure distribution
differs only slightly from the pressure distribution in the undeformed tube, see §2.2.3.
Hence, the compressive load on the tube wall increases approximately linearly with
the distance from the upstream end. This asymmetry in the pressure distribution
only induces a small asymmetry in the tube’s deformation and the point of strongest
collapse remains close to the tube’s centre (figure 4a, b). As the buckling amplitude
increases, the pressure drop in the most strongly collapsed part of the tube becomes
more pronounced. The tube’s downstream end becomes subject to a higher compres-
sive load while the upstream end of the tube becomes inflated. The asymmetry of the
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Figure 4. Tube deformation for constant volume flux (q = 15.0 × 10−5) and various values of the
external pressure. L/R0 = 10. (a) pext = 1.96 × 10−4, (b) pext = 2.04 × 10−4, (c) pext = 2.68 × 10−4,
(d) pext = 6.38× 10−4.

fluid traction increases with the tube’s collapse, driving the point of strongest collapse
more downstream. In the most strongly collapsed tube shown, the point of strongest
collapse has moved to approximately 75% of the tube’s length and the compressive
transmural pressure near the tube’s downstream end has become so large that two
small regions on the tube’s sidewalls have buckled inwards as well.

Figures 5(a) and 5(b) illustrate the effect of variations in the volume flux on the
post-buckling deformation. In (a) a relatively small volume flux induces a moderate
viscous pressure drop in the tube. The fluid pressure distribution only has a weak
effect on the tube’s deformation, which is dominated by the spatially constant external
pressure. Hence, the tube’s deformation is nearly symmetric in the axial direction.
In (b), the tube’s collapse is dominated by the strongly asymmetric fluid pressure,
induced by a relatively high volume flux, and this leads to a strongly asymmetric
deformation.

4.2. The fluid flow

Figure 6 shows the flow through four cross-sections in the most strongly collapsed
part of the tube shown in figure 4(d). Due to the symmetry of the deformation only
one quarter of each cross-section is shown. The contours indicate the magnitude of
the axial velocity component. The tube’s collapse increases the flow resistance in
the strongly collapsed region near the tube’s centreline. Consequently, the point of
maximum axial velocity moves from the tube’s centreline into the two side branches
which will remain open when the opposite walls come into contact. The reduced
cross-sectional area increases the peak axial velocity and the close proximity of the
iso-velocity contours in the most strongly collapsed cross-section indicates a drastic
increase in the axial wall shear stress.
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The black arrows represent the magnitude and direction of the transverse velocity
components. Upstream of the point of strongest collapse, the ‘upper’ part of the tube
wall has a negative axial wall slope (it collapses more strongly towards the tube’s
centreline as one moves in the direction of the flow) whereas the ‘sidewall’ buckles
increasingly outwards. The transverse flow follows this pattern and moves fluid from
the ‘upper’ and central parts of the tube towards the ‘sidewalls’. In the region where
the tube re-opens, the transverse flow reverses its direction. Since the tube re-opens
over a comparatively short axial length, the transverse flow in this region is stronger
than in the upstream part. Near the point of strongest collapse (at z ≈ 7.5), the
transverse velocity components are very small. The transverse streamlines (shown in
white) show that the transverse flow changes its direction gradually, thereby creating
a stagnation point in the transverse flow field: near the ‘sidewall’, the flow has already
changed its direction while the flow near the ‘upper’ wall is still the same as in the
collapsing part of the tube. This is caused by a corresponding gradual change in the
tube wall’s axial wall slope: the ‘sidewall’ has already begun to move back towards
the tube’s centreline (as one moves in the direction of the flow) whereas the ‘upper’
wall is still collapsing inwards. This again shows the close relationship between the
axial wall slope and the transverse flow field that was found in §2.2.3.

The final cross-section is located slightly downstream of the point of strongest
collapse of the small buckled region on the tube’s ‘sidewall’ (see figure 4d) and
shows another interesting feature of the transverse flow field. The ‘upper’ part of the
wall is unaffected by the formation of the small buckled region. Moving along the
circumference in increasing y-direction, a region of positive wall slope is followed by
a smaller region of negative wall slope as would be the case if the additional buckle
were not present. In the lower part of the cross-section, the axial wall slope is positive
again, reflecting the re-opening of the small buckled region. These wall slopes split
the transverse flow field into two separate regions which feed into the two re-opening
wall sections.

Figure 7 shows the fluid pressure distribution in the tube. The solid line represents
the pressure on the tube’s centreline. The broken lines show the pressure distribution
along four different axial lines which follow the deforming fluid mesh. The pressure
gradient in the slightly buckled upstream part of the tube is only slightly higher
than in the rigid upstream tube. The flow resistance increases drastically in the most
strongly collapsed part of the tube: the flow through the most strongly collapsed
20% of the tube’s length accounts for about 80% of the total pressure drop. The
difference between the pressures at various locations in the cross-section indicates the
magnitude of the transverse pressure gradient which drives the transverse flow shown
in figure 6. When the flow enters the downstream rigid tube, the transverse pressure
gradient decays very quickly.

Figure 7 also shows the pressure distribution predicted by the lubrication theory
approximation to the Stokes equations (solid line with symbols). Given that the wall
slopes at the tube’s downstream end are fairly large, lubrication theory provides a
surprisingly good approximation to the real pressure distribution. Lubrication theory
underestimates the overall pressure drop (by 3.6%) since it neglects the dissipation
associated with the transverse flow components. The good agreement between lubri-
cation theory and Stokes flow is closely related to fact that the overall pressure drop
through the tube is dominated by the pressure drop in the most strongly collapsed
region. In this region the wall slopes and transverse flow components are small and
lubrication theory can be expected to provide a good approximation to the pressure
distribution. The pressure drop in the regions with large wall slopes and large trans-
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Figure 7. Pressure distribution through the strongly collapsed tube shown in figure 4(d). The
pressure distribution along five different axial lines, whose position in the fluid mesh is indicated in
the insert, is plotted as a function of the axial coordinate. The solid line with symbols shows the
pressure distribution predicted by lubrication theory.

verse flow components is comparatively small, therefore the error introduced by the
inappropriate use of lubrication theory in these regions is relatively insignificant.

4.3. Flow characteristics

Having analysed the wall deformation and the flow in the collapsed tube in some
detail, we will now investigate the overall characteristics of the system. The observable
parameters in an experiment are the volume flux, q, and three pressures: the upstream
and downstream fluid pressures, pentry and pexit, and the chamber pressure pext. How-
ever, the tube’s deformation is only affected by changes in the transmural pressures,
therefore the system’s state is completely determined by the specification of the vol-
ume flux and two pressure differences. Those can be chosen to be either the upstream
and downstream transmural pressures, ptm(up) = pentry − pext and ptm(dn) = pexit − pext,
respectively, or one of these and the pressure drop through the tube, ∆p = pentry−pexit.
Depending on which parameter is kept constant and which one is used as the control
parameter, different experimental procedures can be simulated.

Before analysing the data in terms of the characteristic pressure differences, we will
first present the data in the form in which it was generated in the computations. In
figure 8(a) the pressure drop through the tube is plotted as a function of the external
pressure when the volume flux and the fluid pressure at the tube’s far downstream
end are held constant. Figure 8(b) shows the corresponding radial displacement of
two material points on the tube wall (at ζ1 = 7.4 and ζ2 = 0, π/2) and thus gives an
indication of the strength of the tube’s collapse. For sufficiently low external pressure,
the tube is inflated axisymmetrically and both radial displacements have the same
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Figure 8. (a) Pressure drop through the tube (∆p = pentry − pexit) as a function of the external
pressure, pext. (b) The corresponding tube deformation, characterized by the radial deformation
of two material points (at ζ1 = 7.4 and ζ2 = 0 (upper solid line) and ζ2 = π/2 (lower solid
line)). The volume flux and the far downstream pressure are held constant (q = 15.0 × 10−5 and
pdown = 0). In both figures the dashed and solid lines represents the axisymmetric deformation and
the post-buckling deformation, respectively. L/R0 = 10.

value. Since the volume flux is held constant and the flow resistance changes little
during the small axisymmetric pre-buckling deformation, the pressure drop through
the tube changes very little with variations in the external pressure. The tube buckles
when the external pressure exceeds a critical value: one material point collapses
towards the tube’s centreline (negative radial displacement), while the other one is
pushed radially outwards (positive radial displacement). The diagram shows that the
tube loses its stability via a subcritical bifurcation and buckles with a snap-through:
the tube wall jumps into a significantly collapsed shape – one of the two material
points is displaced by about 30% of the tube’s radius. The corresponding point in
figure 8(a) shows that this snap-through only induces a moderate jump in the pressure
drop, ∆p. As the external pressure is increased further, the tube’s collapse is monotonic
and the pressure drop rises approximately linearly with the external pressure.

A series of such computations was carried out with different values of the volume
flux to map out the entire parameter space. We will now present the results of
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Figure 9. The flow characteristics obtained from the computations: upstream and downstream
transmural pressures versus the pressure drop through the tube for constant flow rates. The
solid lines are the curves obtained from the solution based on the Stokes equations. The dotted
lines are the lubrication theory results. The arrows indicate the direction of increasing flow rate.
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these studies in terms of the characteristic parameters q, ptm(up), ptm(dn) and ∆p. The
four parameter studies, discussed in the following subsections, correspond to the
four fundamental experimental procedures in which one of the four characteristic
parameters is held constant while another one is chosen as the control parameter.

4.3.1. ptm(∆p) or ∆p(ptm) for q = const.

Figure 9 re-displays the computational data in terms of the characteristic pressure
differences. The upstream and downstream transmural pressures (upper and lower
family of curves, respectively) are plotted as a function of the pressure drop through
the tube while the volume flux, q, is held constant. The five pairs of curves correspond
to five different values of the volume flux. The nearly vertical parts of the curves
are the pre-buckling branches (on which an increase in the transmural pressures very
slightly reduces the pressure drop through the tube). The pre-buckling pressure drop
through the tube is proportional to the volume flux, therefore the curves corresponding
to higher values of the volume flux are shifted to the right.

The tube buckles when the downstream transmural pressure becomes sufficiently
negative. The snap-through behaviour shown in figure 8 manifests itself in the short
region of increased downstream transmural pressure after the loss of stability. If the
downstream transmural pressure is used as the control parameter then it remains
constant during the tube’s loss of stability. Therefore, the system jumps from the end
of the pre-buckling curve to the intersection of the horizontal line ptm(dn) = const. with
the post-buckling curve, thus causing a small jump in the pressure drop.

The diagram also shows that the snap-through behaviour disappears if one were
to control the tube’s collapse by increasing the pressure drop, ∆p, while keeping
the volume flux constant (the functions ptm(∆p)|q=const. are single valued). This is,
however, a rather theoretical prediction since it is not easy to envisage an experimental
procedure which implements this control mechanism.
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The dotted lines in figure 9 are the approximate flow characteristics that are
obtained when lubrication theory is used to compute the fluid traction. As one would
expect, the agreement with the Stokes solution is very good for moderate tube collapse
and the agreement remains surprisingly good in the large-displacement regime.

We will now investigate the flow characteristics for three different experimental
setups. The flow characteristics shown in figures 10–12 below were generated by
interpolating the computational data in the appropriate directions in parameter
space. For this purpose a total of 37 runs with fixed q were carried out. Since
lubrication theory provides a very good approximation of the flow characteristics,
the interpolation was based on the data obtained from the lubrication theory solver
which is computationally much cheaper.

4.3.2. q(∆p) or ∆p(q) for ptm(up) = const.

Figure 10 shows the volume flux through the tube as a function of the applied
pressure drop. The transmural pressure at the upstream end of the collapsible tube
is held constant along the curves. This situation could be realized experimentally by
connecting the tube’s upstream end to a large reservoir from which the fluid enters the
collapsible segment at constant pressure. The flow would be driven by a volumetric
pump, attached to the tube’s downstream end, while the chamber pressure is held
constant. For zero flow, the pressure drop through the tube vanishes and the entire
tube is subject to a constant transmural pressure. For the curves shown, this pressure
is higher (i.e. less compressive) than the tube’s buckling pressure under a constant
load. Therefore, the tube’s deformation without throughflow is axisymmetric. As the
pressure drop is increased (by decreasing the downstream transmural pressure) the
flow rate increases approximately linearly while the downstream end of the tube
becomes more strongly compressed. This part of the flow regime is described by
the nearly straight line emanating from the origin. When the pressure drop and the
compressive load on the downstream end reach a critical value, the tube buckles and
the system undergoes a subcritical bifurcation. In figure 10, the critical parameter
values (∆pcrit, qcrit) at which buckling occurs are determined by the intersection of the
dotted post-buckling curves with the solid pre-buckling curve.

The critical pressure drop, ∆pcrit, and volume flux, qcrit, rise with increasing upstream
transmural pressure. This is because a larger viscous pressure drop is required to
set the tube’s downstream end under sufficiently strong compression to initiate the
buckling when the upstream transmural pressure is raised.

The post-buckling behaviour depends strongly on which parameter (volume flux or
pressure drop) is controlled and therefore held constant during the snap-through. First
consider the case in which the pressure drop through the tube is controlled. In this
case the value of the volume flux immediately after the snap-through is given by the
intersection of the vertical line ∆p = ∆pcrit with the post-buckling curve. The diagram
shows that the large increase in the tube’s flow resistance after the snap-through
reduces the volume flux by a factor of about 2.

The behaviour after the snap-through depends on the magnitude of the upstream
transmural pressure: for small values of ptm(up), a further rise in ∆p increases the
volume flux again. For larger values of ptm(up), a further increase in ∆p diminishes
the volume flux further as the increase in the flow resistance due to the increasing
collapse outweighs the increase in the driving pressure drop. This behaviour is known
as ‘negative effort dependence’ (see e.g. Kamm & Pedley 1989) and is observed during
forced expiration. The system displays a pronounced hysteresis when the tube is
re-opened by reducing the pressure drop. The tube jumps back into the axisymmetric
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Figure 10. Flow characteristics (volume flux q as a function of the pressure drop through the tube,
∆p = pentry−pexit) for constant upstream transmural pressure, ptm(up). The straight solid line represents
the flow in the axisymmetric tube. The curved solid and dotted lines correspond to the stable and un-
stable parts of the post-buckling flow characteristics, respectively. The arrow indicates the direction
of increasing upstream transmural pressure (note that increasing transmural pressure corresponds to
a decreasing compressive load on the tube wall). ptm(up) = −1.15× 10−5, −3.43× 10−5, −5.70× 10−5

and −7.98× 10−5. L/R0 = 10.

shape when the ends of the stable post-buckling curves (solid lines) are reached.
The pressure drop at which re-opening occurs is less than the value at which the
tube collapses. The dotted part of the post-buckling curve is unstable and cannot be
realized experimentally.

Let us now consider the second case in which the volume flux is controlled, as
would be the case in the experimental setup envisaged at the beginning of this section.
In this case the volume flux would remain constant during the tube’s buckling and
the pressure drop through the tube immediately after the snap-through would be
determined by the intersection of the horizontal line q = qcrit with the post-buckling
curve. The diagram shows that no such intersection exists. All post-buckling curves in
figure 10 end shortly before opposite wall contact occurs for the first time. Therefore,
we conclude that the increase in the compressive load on the tube wall after the
buckling is so large that it cannot be balanced by the restoring elastic forces. Under
these conditions the entire length of the post-buckling curve is unstable. The tube
buckles so strongly that its opposite walls come into contact. The opposite wall
contact results in an overall stiffening of the tube which might be able to balance the
strongly compressive fluid traction. Since the wall contact problem has not yet been
incorporated into the model, we cannot investigate this region of parameter space.
However, the results suggest the tube’s loss of stability is followed by a strong collapse
after which large areas of the wall would be in opposite wall contact (see also §5).
In figure 9 this behaviour manifests itself as an increase in the upstream transmural
pressure after the buckling.

4.3.3. q(∆p) or ∆p(q) for ptm(dn) = const.

Figure 11 shows the tube’s flow characteristics for the case in which the downstream
transmural pressure is held constant while the pressure drop and the volume flux
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Figure 11. Flow characteristics (volume flux, q, as a function of the pressure drop through the tube,
∆p = pentry−pexit) for constant downstream transmural pressure, ptm(dn). The straight solid line repre-
sents the flow in the axisymmetric tube. The curved solid and dotted lines correspond to the stable
and unstable parts of the post-buckling flow characteristics, respectively. The arrow indicates the
direction of decreasing downstream transmural pressure (note that decreasing transmural pressure
corresponds to an increasing compressive load on the tube wall). ptm(dn) = −1.0× 10−4,−1.1× 10−4

and −1.2× 10−4. L/R0 = 10.

through the tube are varied. The corresponding experimental setup is similar to the
one in the previous case, but the position of the reservoir and the volumetric pump
have to be reversed. The values of the downstream transmural pressures for the three
curves in figure 11 are lower (i.e. more compressive) than the tube’s buckling pressure
under a constant load. Without throughflow, the tube is therefore collapsed. As the
pressure drop through the tube is increased (by increasing the upstream transmural
pressure) the tube re-opens and thereby decreases its flow resistance. Therefore, the
volume flux through the tube increases rapidly. Lowering the downstream transmural
pressure increases the tube’s collapse and leads to a larger pressure drop for a
given volume flux. Therefore, the curves corresponding to lower values of ptm(dn) are
shifted to the right. When the pressure drop reaches a critical value (at the ends
of the solid lines) the tube wall jumps into an axisymmetric shape and re-opens
completely. On the axisymmetric branch, the relation between flow rate and pressure
drop is approximately linear. Again, we observe a strong hysteresis as we change from
re-opening to collapsing.

If the volume flux is controlled (and therefore held constant during the snap-
through buckling or re-opening), the displacement jump is accompanied by a sudden
change in the pressure drop through the tube. The collapse is subcritical for either
control parameter.

Figure 11 also shows that a reduction in the downstream transmural pressure
increases the pressure drop at which the tube buckles. This can be explained as
follows: a decrease in the downstream transmural pressure destabilizes the tube
since it increases the compressive load on the tube’s downstream end. A rise in the
pressure drop increases the upstream transmural pressure and thus counteracts the
destabilization by confining the compressed region to a smaller region near the tube’s
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downstream end. The inflated upstream part of the tube also exerts an axial tension
on the compressed part and thus stabilizes it further.

4.3.4. q(ptm) or ptm(q) for ∆p = const.

Finally, we investigate the case in which the pressure drop through the tube is held
constant (e.g. by connecting the upstream and downstream ends of the collapsible
segment to large reservoirs at different heights). This case is representative for the flow
of blood in the pulmonary capillaries, where the venous and arterial pressures are
constant while the alveolar pressure is changed, e.g. during forced expiration. Figure 12
shows the volume flux through the tube as a function of the upstream and downstream
transmural pressures (solid and dashed lines, respectively). The pressure drop is held
constant along the curves and therefore determines the horizontal distance between
the corresponding dashed and solid lines. When the upstream transmural pressure is
larger than the pressure drop, the entire tube is inflated and the volume flux is nearly
constant and proportional to the applied pressure drop. The tube collapses when the
downstream transmural pressure becomes sufficiently negative. The loss of stability
is again subcritical and the collapse reduces the volume flux by a factor of about 2.
After the buckling a further reduction of the upstream (and downstream) transmural
pressures increases the collapse further, monotonically reducing the volume flux.

If the volume flux were used as the control parameter (again, not an easy task
experimentally since the pressure drop has to be kept constant along the curves),
the loss of stability would be supercritical and the tube’s collapse would increase
continuously as the volume flux is decreased.

4.4. Variations in the tube geometry

All the results presented so far were obtained for one particular tube geometry. We
will now investigate the effect of variations in the tube’s length on its deformation and
flow characteristics. Figure 13 shows a strongly collapsed tube which is twice as long
(L/R0 = 20) as that used in the above computations. As explained in §4.2, the viscous
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solid lines are the curves obtained from the solution based on the Stokes equations. The dotted
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pressure drop moves the region of strongest collapse towards the tube’s downstream
end. Upstream of the collapsed region, the tube becomes inflated. Figure 13 shows
that the same mechanism governs the deformation of longer tubes: an increase in
the tube’s length merely increases the length over which the tube is inflated. The
deformation of the strongly collapsed region near the tube’s downstream end remains
virtually unaffected.

The tube’s flow characteristics, shown in figure 14, are very similar to the ones
obtained for the shorter tube. However, it should be noted that the increase in the
tube’s length changes the buckling behaviour under constant downstream transmural
pressure and constant volume flux. The bifurcation changes from subcritical to
supercritical and the snap-through behaviour disappears: the downstream transmural
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pressure decreases monotonically as the tube collapses. For sufficiently low volume
flux, the same applies to the buckling under constant upstream pressure (e.g. the
upstream transmural pressure for q = 1.0× 10−5 = const. decreases monotonically as
the tube collapses).

These effects are mainly due to the wall mechanics. An increase in the tube’s length
changes its buckling behaviour under a dead load (i.e. a load which does not change
its magnitude as the tube deforms). Only tubes whose length to radius ratio, L/R0,
is less than a certain critical value (which depends on the tube’s wall thickness, h/R0,
and its Poisson ratio, ν) buckle with a snap-through when subjected to a controlled
external pressure.

If we control the transmural pressure at the tube’s downstream end (where it is
most compressive) we control the overall compression of the tube wall. Therefore,
the buckling is similar to that under a controlled dead load and hence supercritical.
Conversely, controlling the upstream transmural pressure does not control the com-
pression of the tube’s downstream end. For sufficiently high volume flux, the increase
in the compressive load induced by the buckling is large enough to cause the strong
collapse with immediate opposite wall contact if the upstream transmural pressure
and the volume flux are held constant. Only if the volume flux is very small, such that
the tube’s post-buckling behaviour is dominated by the external pressure (as discussed
in §4.1), does the increase in the tube’s length change the buckling behaviour to a
supercritical bifurcation.

A reduction in the tube’s length has a more dramatic effect on its post-buckling
deformation. It is well known from the stability analysis of cylindrical shells under
external pressure (e.g. Yamaki 1984) that shorter cylindrical shells buckle with higher
circumferential wavenumbers. The stability analysis of cylindrical shells conveying
viscous flow (Heil 1996) confirmed this behaviour. The short tube shown in figure 15
(L/R0 = 5) is strongly buckled in its most unstable buckling mode with N = 3
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circumferential waves. A cross-section through the tube is shown in the insert at the
top right corner of the figure. The flow through four cross-sections in the most strongly
collapsed part of this tube is shown in figure 16. The contours for the axial velocity
component show that a collapse in this buckling mode concentrates the flow near the
tube’s centreline where the flow resistance is lower than in the relatively narrow outer
lobes. In the collapsing upstream part of the tube, the axial velocity increases in the
streamwise direction and the transverse flow converges towards the tube’s centreline.
Again, the transverse streamlines reflect the variations in the tube’s axial wall slope.
During the early stages of the tube’s collapse and in its weakly collapsed cross-sections,
the radial displacement varies sinusoidally with the circumferential coordinate, i.e.
v3 ∼ cos (Nζ2). Consequently, the collapsing sectors of the tube’s wall alternate with
sectors in which the wall bulges out. Since the tube has a high extensional stiffness,
it always deforms such that its circumference remains approximately constant. For
buckling patterns with two circumferential waves (N = 2), the bulging parts of the
tube wall are therefore pushed further outwards as the tube collapses more strongly.
An equivalent buckling pattern with a higher number of circumferential waves would
lead to considerable circumferential stretching of the tube. Therefore, the collapsing
parts of the wall pull the lobes, which were initially bulging out, towards the tube’s
centreline as the buckling amplitude increases. The corresponding changes in the axial
wall slope result in the transverse flow patterns shown in figure 16.

It was shown in Heil (1996) and Heil & Pedley (1996) that longer tubes can also
be forced to buckle with higher circumferential wavenumbers. For this purpose, one
would have to subject the tube’s upstream end to a large positive transmural pressure
and increase the volume flux slowly. Due to the strong upstream pressurization, a
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substantial volume flux would then be required to compress the tube’s downstream
end. The tube buckles when a sufficient fraction of its length is subject to a sufficiently
strong compression. For high upstream pressures, buckling occurs when a relatively
small fraction of the tube’s length is subject to a very high compressive load. Since
the upstream part of the tube is still strongly inflated, it does not participate in the
buckling and behaves like a rigid support for the short collapsing region. Hence the
buckling in the collapsing part of the tube is very similar to the buckling of a shorter
tube and the most unstable buckling wavenumber is increased.

The flow characteristics of the shorter tube (L/R0 = 5) are qualitatively similar to
those shown for the longer tube (L/R0 = 10, see figure 9) but, due to the larger wall
slopes in the shorter tube, the error introduced by the use of lubrication theory is
slightly larger.

5. Experiments
It was pointed out in the introduction that the present study provides the first

entirely self-consistent model of viscous flow in collapsible tubes. Therefore, we expect
the computational results to be in good agreement with experimental observations.
Virtually all previous experimental investigations of the flow in collapsible tubes were
concerned with flows at significantly higher Reynolds numbers (a notable exception is
Lyon, Scott & Wang’s (1980) investigation into the applicability of the waterfall model
for flow in collapsible tubes – the author is grateful to one of the referees for pointing
out this reference). Therefore, a new experiment was designed and used to measure
the flow characteristics of the collapsible tube. The experimental apparatus closely
resembled the setup sketched in figure 1. A thin-walled rubber tube (wall thickness
h = 0.5 mm, E = 1.1 × 106 Pa, ν = 0.5) was mounted on two Plexiglas tubes (inner
radius Rup = Rdown = 3.15 mm) whose ends had been machined to an outer radius
very slightly larger than the undeformed radius of the collapsible tube (R0 = 4.2 mm).
Tightly fitting O-rings secured the collapsible tube onto the rigid tubes. Thick-walled
rubber tubes connected the upstream rigid tube to a syringe pump which pumped
high-viscosity silicon oil (µ = 9.0 kg m−1 s−1) through the system. At the downstream
end, the oil drained into an open container. The pressure chamber was filled with
water which made the oil-filled collapsible tube slightly buoyant (ρoil/ρwater ≈ 0.97).
The chamber pressure, pext, was adjusted by varying the height of the water column in
a transparent tube which was attached to the pressure chamber. Pressure transducers
were attached to the rigid tubes to monitor the fluid pressures. The pressure taps were
located Lup = 15 mm upstream and Ldown = 19 mm downstream of the respective ends
of the collapsible tube whose unsupported length was L = 112 mm. The collapsible
tube was mounted with minimum axial pre-stretch and axial twisting.

The experiments were carried out at room temperature and the fluid viscosity
was determined by measuring the pressure drop through a rigid reference tube.
The changes in the pressure drop with variations in the volume flux confirmed
Newtonian behaviour for the flow rates used in the experiments. The tube’s elastic
modulus was determined in uniaxial extension tests. These data varied considerably
between measurements with different samples from the tube. The precise value of
the elastic modulus used in the comparison with the computations was therefore
obtained by matching the experimental and computational data for the flow through
the undeformed tube.

The maximum Reynolds number, Re = ŪR0 ρoil/µ, in the experiments was about
1.4 × 10−3. The computations predict that a strong tube collapse increases the axial
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Figure 17. Comparison between computational predictions (solid lines) and experimental data
(symbols) for the flow-characteristics of the collapsible tube used in the experiment. V̇ = 5 ml min−1

(+) and V̇ = 2.5 ml min−1 (×). L/R0 = 26.7. The straight dotted lines were obtained by a
least-squares fit to the experimental data points.

velocity by a factor of about 2–3. Therefore, we do not expect inertial effects to play
a significant role in the experiments. It should be noted that the ratio h/R0 = 0.12 in
the experiments is somewhat too large properly to justify the use of thin-shell theory
(see e.g. Wempner 1973).

In the experiments, the volume flux through the tube was held constant while
the external pressure, pext, was varied to control the tube’s collapse. The data were
collected in several sweeps through the entire range of the tube’s collapse, alternating
between collapsing and re-opening.

Figure 17 shows the tube’s flow characteristics (transmural pressures at the pressure
taps, p′tm(up) = pup− pext and p′tm(dn) = pdown− pext, respectively, versus the total pressure
drop, ∆p′ = pup−pdown) for two different values of the volume flux. The solid lines are
the computational results and the symbols represent the experimental data points.
The straight dotted lines were obtained by a least-squares fit to the experimental data.
They were plotted to show that the upstream transmural pressure does indeed have
a slight tendency to increase as the tube collapses more strongly. This confirms the
computational predictions of a strong collapse with immediate opposite wall contact
if the tube’s upstream pressure is held constant while the volume flux is increased to
induce the tube’s collapse (see §4.3.2).

The experimental data agree very well with the computational predictions. However,
it should be noted that the experimental curves continue beyond the end of the
computational curves which are restricted to tube shapes without opposite wall
contact. Initially it had been hoped that the occurrence of opposite wall contact
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would affect the flow characteristics sufficiently to have a marked effect on these
curves. Therefore, experimental data were collected up to a level of external pressure
at which the appearance of a small flattened region in the most strongly collapsed
part of the tube wall indicated that the opposite walls were effectively in contact (they
were presumably still separated by a thin squeeze film. However, the flow resistance
in the corresponding narrow gap between the walls would be so high that its presence
would make little difference to the flow resistance of the entire cross-section). At
precisely what value, p(c)

ext, of the external pressure the opposite walls touched for the
first time (in point contact) seemed impossible to assess with the present experimental
setup. Figure 17 shows that the occurrence of opposite wall contact does not have a
noticeable effect on the flow characteristics. The upstream (downstream) transmural
pressures continue to increase (decrease) approximately linearly with the pressure
drop through the tube. The decreasing downstream transmural pressure moves the
point of strongest collapse further downstream while the tube’s upstream end becomes
more strongly inflated.

For even higher external pressures the tube’s downstream end becomes so strongly
collapsed that it is sucked into the downstream rigid tube. Ultimately, the experiment
has to be terminated when the syringe pump fails to produce the required upstream
pressures.

The experimental observation that the upstream transmural pressure continues to
increase long after opposite wall contact has occurred for the first time casts some
doubt on the existence of steady post-buckling deformations in the experimental
setup discussed in §4.3.2 (controlled increase in the volume flux to induce the tube’s
collapse while keeping the upstream transmural pressure constant). It appears that
the opposite wall contact is unable to stiffen the tube sufficiently to balance the
strongly compressive fluid traction after the collapse. This would be in agreement
with previous simple models of viscous flow limitations (e.g. Wilson et al. 1986).

Figure 18 shows a comparison between the computed and experimentally observed
wall shapes. While no attempts were made to extract displacement data from the
experiments, the visual agreement between computations and experiments can be
seen to be quite good.

6. Discussion
The computational results and experimental observations presented here provide a

detailed picture of the mechanisms governing the large-displacement fluid–structure
interaction in this problem. However, in view of the computational cost associated
with such detailed computations, it is desirable to investigate if the results obtained
from this study can be used to improve simpler – ideally one-dimensional – models
such that they capture the essential details of the system’s behaviour.

Theories in which the flow is modelled one-dimensionally require a ‘tube law’
to establish a relation between the local transmural pressure and the tube’s cross-
sectional area. The main problem associated with a classical ‘tube law’ in which the
transmural pressure is assumed to depend only on the local cross sectional area,
p(z) − pext = P[A(z)], is that it does not allow the downstream boundary condition
for the cross-sectional area to be satisfied. If the chamber pressure is constant then
the viscous pressure drop reduces the transmural pressure in the direction of the
flow. Consequently, the tube’s cross-sectional area at the downstream end would have
to be smaller than at the upstream end. This is not consistent with the boundary
conditions for the wall deformation. In order to overcome this problem, various
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Figure 18. Comparison of the computed and experimentally observed wall shapes.
V̇ = 5 ml min−1, ptm(down) = −33 cm H2O, L/R0 = 26.7.

authors (McClurken et al. 1981; Reyn 1987) modified the tube law by attempting
to include the effects of longitudinal wall tension, T . They assumed that the cross-
sections in the strongly collapsed parts of the tube are very flattened so that the flow
through these cross-sections resembled the flow between two parallel membranes.
Then the tube’s cross-sectional area A(z) is related to the axial wall curvature and the
tube law can be written as

p(z)− pext = P[A(z)]− T ∂
2A

∂z2
. (24)

With this tube law, equal upstream and downstream cross-sectional areas are no
longer equivalent to a vanishing pressure drop. The reduced downstream transmural
pressure can be balanced by an increase in the axial wall curvature.

However, it has already been pointed out in Heil & Pedley (1996) that the tube
shapes do not confirm the assumptions underlying the above modifications. The tube
wall never appears flattened in a way that would make it behave like two parallel
membranes. The moderately collapsed, nearly elliptical cross-sections of moderate
aspect ratio are followed by dumbbell shaped cross-sections in which the flow is
already splitting up into two separate side branches. Furthermore, it should be noted
that the axial wall curvature has different signs in the collapsing and bulging sectors



Stokes flow in collapsible tubes 311

of the tube. Since the size of these sectors is comparable, it is not obvious if positive
axial wall tension would tend to increase or decrease the average transmural pressure.
It appears that the wall mechanics are inherently three-dimensional and that no
simple decomposition into circumferential and axial contributions is possible.

It is, however, interesting to note that lubrication theory (which was shown to pro-
vide an excellent approximation to the fluid traction at zero Reynolds number) is in
essence the fluid mechanics equivalent of the ‘tube law’. It expresses the pressure gra-
dient and shear stress as a function of the local shape of the tube’s cross-section, very
much in the same way as the solid mechanics ‘tube law’ expresses the cross-sectional
area as a function of the local transmural pressure. While the coupling between lubri-
cation theory and nonlinear shell theory is still significantly more complicated than
a one-dimensional model, its numerical solution is an order of magnitude cheaper
than the coupling with the full three-dimensional Stokes equations. It also manages
to capture all the relevant mechanisms involved in the fluid–structure interaction.

While the present model enables us to investigate the system’s behaviour at low
Reynolds numbers it cannot be used to investigate the self-excited oscillations which
are observed in many experiments since they tend to occur at higher Reynolds
numbers. From a computational point of view, the coupled Stokes flow/shell theory
solver, developed for this study, is a first step towards a simulation with finite Reynolds
number and – ultimately – with time dependence.

The author wishes to thank Professor Roger Kamm, Dr Naomi Chesler and
Dr Serhat Yesilyurt for many helpful discussions. Sara Godding helped carry out
the experiment, the design of which was improved in many enjoyable discussions
with Hayden Huang. The computations were carried out on the Cray C90 at the
Pittsburgh Supercomputer Center. Financial support was provided by the German
Academic Exchange Service through a NATO fellowship and by the EPSRC.

Appendix. The strain and bending tensors
The strain and bending tensors which describe the deformation of the shell in the

variational principle (4) are obtained from the tangential base vectors to the deformed
shell’s midplane, Aα = R0

,α. With the deformed midplane metric tensor Aαβ = Aα · Aβ
the strain tensor is given by

γαβ = 1
2
(Aαβ − δαβ)

since the undeformed midplane metric is orthogonal (the undeformed midplane
metric tensor is aαβ = δαβ). With the normal vector to the deformed shell, N =
A1 × A2/|A1 × A2|, the non-dimensional curvature tensor of the deformed midplane
is Bαβ = N · Aα,β . The non-dimensional bending tensor is given by

καβ = −(Bαβ − bαβ),

where the only non-zero entry in the undeformed curvature tensor bαβ is b22 = −1.
Many authors derived approximate shell theories in which different approximations

to these exact strain and bending tensors were used. However, it was shown in Heil
& Pedley (1996) that the full nonlinear expressions have to be retained to obtain
accurate results in the large-displacement regime.
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